Inferring Weighted Directed Association Networks from Multivariate Time Series with the Small-Shuffle Symbolic Transfer Entropy Spectrum Method

نویسندگان

  • Yanzhu Hu
  • Huiyang Zhao
  • Xinbo Ai
چکیده

Complex network methodology is very useful for complex system exploration. However, the relationships among variables in complex systems are usually not clear. Therefore, inferring association networks among variables from their observed data has been a popular research topic. We propose a method, named small-shuffle symbolic transfer entropy spectrum (SSSTES), for inferring association networks from multivariate time series. The method can solve four problems for inferring association networks, i.e., strong correlation identification, correlation quantification, direction identification and temporal relation identification. The method can be divided into four layers. The first layer is the so-called data layer. Data input and processing are the things to do in this layer. In the second layer, we symbolize the model data, original data and shuffled data, from the previous layer and calculate circularly transfer entropy with different time lags for each pair of time series variables. Thirdly, we compose transfer entropy spectrums for pairwise time series with the previous layer’s output, a list of transfer entropy matrix. We also identify the correlation level between variables in this layer. In the last layer, we build a weighted adjacency matrix, the value of each entry representing the correlation level between pairwise variables, and then get the weighted directed association network. Three sets of numerical simulated data from a linear system, a nonlinear system and a coupled Rossler system are used to show how the proposed approach works. Finally, we apply SSSTES to a real industrial system and get a better result than with two other methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inferring Weighted Directed Association Network from Multivariate Time Series with a Synthetic Method of Partial Symbolic Transfer Entropy Spectrum and Granger Causality

Complex network methodology is very useful for complex system explorer. However, the relationships among variables in complex system are usually not clear. Therefore, inferring association networks among variables from their observed data has been a popular research topic. We propose a synthetic method, named small-shuffle partial symbolic transfer entropy spectrum (SSPSTES), for inferring asso...

متن کامل

Inferring a Drive-Response Network from Time Series of Topological Measures in Complex Networks with Transfer Entropy

Topological measures are crucial to describe, classify and understand complex networks. Lots of measures are proposed to characterize specific features of specific networks, but the relationships among these measures remain unclear. Taking into account that pulling networks from different domains together for statistical analysis might provide incorrect conclusions, we conduct our investigation...

متن کامل

Trial-Shuffle Method for Inferring Information Transfer in Spike-train Data Sets

Understanding information processing in the brain requires the ability to determine the functional connectivity between the different regions of the brain. We present a method using transfer entropy to extract this flow of information between brain regions from spike-train data commonly taken in neurological experiments. Transfer entropy is a statistical measure based in information theory that...

متن کامل

Multivariate construction of effective computational networks from observational data

We introduce a new method for inferring effective network structure given a multivariate timeseries of activation levels of the nodes in the network. For each destination node in the network, the method identifies the set of source nodes which can be used to provide the most statistically significant information regarding outcomes of the destination, and are thus inferred as those source inform...

متن کامل

Simulation Study of Direct Causality Measures in Multivariate Time Series

Measures of the direction and strength of the interdependence among time series from multivariate systems are evaluated based on their statistical significance and discrimination ability. The best-known measures estimating direct causal effects, both linear and nonlinear, are considered, i.e., conditional Granger causality index (CGCI), partial Granger causality index (PGCI), partial directed c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2016